4. SOLVING PHASE

The next step in the FEA analysis is to send the model off and let the computer do all the calculation work. The software that does all the
calculations is called the solver and it goes through the meshed model you’ve created and solves a bunch of mathematical equations for each
of the nodes to figure out overall stress and deformation of the part.

These equations are based on the old F=kx equation for a spring, where F 1s the force, k 1s the spring stiffness and x 1s the displacement of the
spring, or how much it stretches due to the applied force.

NN

Onglnal Stretched
Fig. 112 Spring Equation F=kx [10]

In FEA most structures can be considered as a big, complex spring. However, instead of having to calculate x once, like in the simple spring
example, the displacement needs to be calculated for eachnode in the model.

The solver 1s solving literally thousands of these F=kx equations simultaneously using the forces and the matenial stiffness you’ve defined, to
come up with the displacement of every node in the model

Once it knows the nodal displacements and how each element 1s deforming, it can also calculate stress within the element. This is particularly
handy, as this is what determines whether your part is going to break or not [10].



4.1. General considerations about solving phase?

While the pre-processing and post-processing phases of the finite element method are interactive and time-consuming for the analyst, the
solution is often a batch process, and is demanding of computer resource.

The governing equations are assembled into matrix form and are solved numerically. The assembly process depends not only on the type of
analysis (e.g. static or dynamic), but also on the model's element types and properties, material properties and boundary conditions [47].

In the case of a linear static structural analysis, the assembled equation 1s of the form:

Kd=r, Eq. 15

where I is the system stiffness matrix, d is the nodal degree of freedom (dof) displacement vector, and r is the applied nodal load vector. To
appreciate this equation, one must begin with the underlying elasticity theory. The strain-displacement relation may be introduced into the
stress-strain relation to express stress in terms of displacement.

Under the assumption of compatibility, the differential equations of equilibrium in concert with the boundary conditions then determine a
unique displacement field solution, which in tum determines the strain and stress fields. The chances of directly solving these equations are
slim to none for anything but the most trivial geometries, hence the need for approximate numerical techniques presents itself.

A finite element mesh is actually a displacement-nodal displacement relation, which, through the element interpolation scheme, determines the
displacement anywhere in an element given the values of its nodal dof. Introducing this relation into the strain-displacement relation, we may
express strain in terms of the nodal displacement, element interpolation scheme and differential operator matrix.

Recalling that the expression for the potential energy of an elastic body includes an integral for strain energy stored (dependent upon the strain
field) and integrals for work done by external forces (dependent upon the displacement field), we can therefore express system potential energy
in terms of nodal displacement [47].

2 The content of this chapter (marked with [47]) was taken from the paper: Roensch, S. “The Finite Element Method A Four-Article Series” with the written
consent of the author, whom I thank.
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Applying the principle of minimum pofential energy’, we may set the partial derivative of potential energy with respect to the nodal dof vector
to zero, resulting in: a summation of element stiffness integrals, multiplied by the nodal displacement vector, equals a summation of load
integrals.

Each stiffness integral results in an element stiffness matrix, which sum to produce the system stiffness matrix, and the summation of load
integrals yields the applied load vector, resulting in Kd = r. In practice, integration rules are applied to elements, loads appear in the r vector,
and nodal dof boundary conditions may appear in the d vector or may be partitioned out of the equation [47].

Solution methods for finite element matrix equations are plentiful. In the case of the linear static Kd = r, inverting K 1s computationally
expensive and numerically unstable. A better technique is Cholesky factorization, a form of Gauss elimination, and a minor variation on the
"LDU" factorization theme. The K matrix may be efficiently factored into DU, where L is lower triangular, D is diagonal, and U is upper
triangular, resulting in LDU d = r. Since L and D) are easily inverted, and U is upper triangular, d may be determined by back-substitution.

Another popular approach is the wavefront method, which assembles and reduces the equations at the same time. Some of the best modern
solution methods employ sparse matrix techniques. Because node-to-node stiffnesses are non-zero only for nearby node pairs, the stiffness
matrix has a large number of zero entries. This can be exploited to reduce solution time and storage by a factor of 10 or more. Improved solution
methods are continually being developed. The key point is that the analyst must understand the solution technique being applied [47].

Dynamic analysis for too many analysts means normal modes. Knowledge of the natural frequencies and mode shapes of a design may be
enough in the case of a single-frequency vibration of an existing product or prototype, with FEA being used to investigate the effects of mass,
stiffness and damping modifications. When investigating a future product, or an existing design with multiple modes excited, forced response
modeling should be used to apply the expected transient or frequency environment to estimate the displacement and even dynamic stress at
each time step [47].

This discussion has assumed h-code elements, for which the order of the interpolation polynomials is fixed. Another technique, p-code,
increases the order iteratively until convergence, with error estimates available after one analysis. Finally, the boundary element method places
elements only along the geometrical boundary. These techniques have limitations, but expect to see more of them in the near future [47].

3 See dnnex A.3
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4.2. Modern design problem

s  determining the behavior of a system under the effect of external actions (Fig. 113);

s  which is the response (Fig. 114) of the system when subjected to external actions (changes in the forces, temperatures and so on).

OVERALL CONDITION OF LOCAL STATE OF
THE STRUCTURE THE MATERIAL
(macro) (micro)

MECIIANICAL ACTION STRESS
(forces, torques) (normal, tangential)

DISPLACEMENTS SPECIFIC DEFORMATION
(lincar, angular) (lincar, angular)
Fig. 113 System reaction Fig. 114 Internal and external behavior of a system subject to a mechanical
stress [44]

4.3. Solving methods

4.3.1. Numerical Methods [36]
1. Finite Element Method
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2. Boundary Element Method
3. TFinite Difference Method
4.  Finite Volume Method
5. Meshless Method
Type Finite difference methods Finite volume methods Finite element methods

Grafical representation

- .

L 1 !

= =
m 7
1 ! L 1

<
s el
:_/ N B |

T T

Comments Explicit in time The local approximation is a cell | The solution is defined in a
Strong theory average. nonlocal manner.
XA—1,'2 N
[ un(x)dx = H<T* Un(x) =Y Ukgw(X)
Jxk-1/4 k=1
Main benefits Simple to implement and fast Robust and fast due to locality Higher-order  accuracy  and
Complex geometries complex geometries can be

Well suited for conservation laws
Explicit in time

combined

Main problem

Simple local approximation and

Inability to archive high-order accuracy

Implicit in time

geometric  flexibility are not |on general grids. Not well suited for problems with
agreeable direction.

Complex geometry X v v

Higher-order accuracy N X v

and Ap-adaptivity

Local mass Conservation N v X
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4.3.2. Fundamental concepts [55]

Many engineering phenomena can be expressed by “goveming equations” and “boundary conditions™.

Elastic problems

Thermal problems
Fluid flow

Electrostatics

Etc.

Example: Vertical machining center

» Elastic
deformation

¢  Thermal
behaviour

+ Ete.

%

Governing Equations
(Differential equations)

L(®) +f=0

oty

| Boundary Conditions

B(®) +g=0

Geometry is very
com plex!
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Governing

Equations L(9+f=0
FEM A set of simultaneous
I > algebraic equations.
Boundary  Bf{@) +g=10 Aproximate! [K] {u} = {F}
Conditions

You know all the equations,
but vou cannot solve it by hand

[K {u}={F}\ C—) W= KB

Property  Behaviour Action

Property [K] Behavior {uk Action {F}
Elastic stiffness displacements force
Thermal conductivity ( temperature \ heat source
Fluid viscosity velocity / body force
Electrostatic | dielectric permittivity \ﬁlectric potential / charge

unknown
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Itis very difficult to make the algebraic equations for the entire domain

#  Divide the domain into a menber of small, simple elem ents
= A fleld quantity is interpolated by a polynomial over an elem ent
= Adjacent elements share the DOF at comecting nodes

Finite elemenit = small piece of stracthure
Ohtain the algebrac equations for each element (this iz easyl).

#  Put 4ll the element equations together

K 1u") = {F"} [E* "} = {F) [E* "} = {F")
- rl »_
4 4 0

K Jiu®) ={FF) (K1} =4F") (K 1"} = (FF)
£ ey, = =

G (K fu®}={F}  [K*]{") = (F) (K" "} = (FF)
-7
N N i3
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Solve the equations, obtaining unknown variabless at nodes.

[K] {u§ = {F} > {u} = [K]" {F}

Concepts — Summary

FEM uses the concept of piecewise polynomial interpolation.

By connecting elements together, the field quantity becomes interpolated over the entire structure in piecewise fashion.

A set of simultaneous algebraic equations at nodes.

Kx=F
K: Stiffness matrix
[I\ ] :u} — {F} x: Displacement K
e .. ' F: Lead
& 1 |
Property I' Action @ vy
Behavior F
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Advantages of the FEM

v" Canreadily handle very complex geometry:
- The heart and power of the FEM
v Can handle a wide variety of engineering problems
- Solid mechanics - Dynamics - Heat problems
- Fluids - Electrostatic problems
v" Can handle complex restraints
- Indeterminate structures can be solved.
v Can handle complex loading
- Nodal load {point loads)
- Element load (pressure, thermal, inertial forces)
- Time or frequency dependent loading

Disadvantages of the FEM

% A general closed-form solution, which would permit one to examine system response to changes in various parameters, is not
produced.

% The FEM obtains only "approximate” solutions.

The FEM has "inherent" errors.

*  Mistakes by users can be fatal.

x

4.3.3. FEM formulation for a linear differential equation

The Finite Element Method (FEM) is a weighted residual method that uses compactly-supported basis functions.
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Brief Comparison with Other Methods

Finite Difference Method (FDM): Finite Element Method (FEM):

FDM approximates an operator (e.g., the derivative) and solves a | FEM uses exact operators but approximates the solution basis
problem on a set of points (the grid) functions. Also, FE solves a problem on the interiors of grid cells
(and optionally on the gridpoints as well).

Spectral Methods (SM): Finite Element Method (FEM):

SM use global basis functions to approximate a solution across the | FEM methods use compact basis functions to approximate a solution
entire domain on individual elements.

Overview of the Finite Element Method
()= W)=~ (G)= (M)

Strong | Weak | Galerkin | Matrix

form | form | approx | form

4.3.4. From Strong Form to Weak form (1D)* [13]

Classification of Engineering Systems

Discrete

“ The content of this chapter (marked with [13]) was taken from the paper Chatzi, E.: “The Finite Element Method for the Analysis of Non-Linear and
Dynamic Systems”, lecture notes, with the writien consent of the author, whom I thank.
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Laplace Equation:

The analysis of characteristic phenomena of continuous environments can be mathematically described in two ways:
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Differentially — the solution to the problem is obtained by solving the system of differential equations with respect to imitial conditions and / or

limits.

Variationally — the solution to the problem 1s obtained by seeking a stationary features to make a functional (leading to maximum or minimum))
subject to the conditions initial and / or boundary. This method requires knowledge of specific features of the physical phenomenon of the

problem.
The functional determination can be made:

s Based on differential equations modeling this phenomenon;
s  Based on energy theorems governing the phenomenon.

Consider the following 1 Dimensional (1D) strong form (parabolic)

d du
(e 5) + () =0
L
dx
u(L)=0
Physical problem (1D) Diff. Eq. Quantities Constitutive law
One dimensional Heat flow i  dTy T=temperature Fourier
By T A=area q = -k dT/dx
k=thermal conductivity g = heat flux
Q=heat supply
Axially loaded bar ' d 4 : u=displacement Hooke
- . A to=0 A=area o = E du/dx
E=Young’s Modulus o = stress

B=axial loading
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The strong form requires strong continuity on the dependent field vaniables (usually displacements). Whatever functions define these variables
have to be differentiable up to the order of the PDE that exist in the strong form of the system equations. Obtaining the exact solution for a
strong form of the system equation is a quite difficult task for practical engineering problems.

The finite difference method can be used to solve the system equations of the string form and obtain an approximate solution. However, this
method usually works well for problems with simple and regular geometry and boundary conditions.

Alternatively we can use the finite element method on a weak form of the system. This is usually obtained through energy principles which is
why 1t 1s also known as variational form.

Three are the approaches commonly used to go from strong to weak form:

s Principle of Virtual Work;
s Principle of Minimum Potential Energy;
s  Methods of weighted residuals (Galerkin, Collocation, Least Squares methods, etc).

4.3.4.1. Approach #1. Principle of Virtual Work

For any set of compatible small virtual displacements imposed on the body 1n its state of equilibrium, the total internal virtual work 1s equal to
the total external virtual work.
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Wint = [ ETTd) = Wee = / i bdQ + /ESTTsdr— ZG’TR(:'.
JQ JQ JT i

where

— T surface traction (along boundary I)

—  b: body force per unit area
—  Re:nodal loads

— W yirtual displacement

—  €lyirtual strain
T stresses

4.3.4.2. Approach #2. Principle of Minimum Potential Energy

Applies to elastic problems where since the elasticity matrix is positive definite, hence the energy functional IT has a minimum (stable

equilibrium).

Approach #1 applies in general.

The potential energy [ ] 1s defined as the strain energy U minus the work of the external loads W:
n=u-w

1
U=—/J&d§z
2 Jo

W= / i bdQ + / @ Tedlr+ Y @/ Rc'
] Jrs -
(b, Ts, R¢ as defined previously)
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4.3.4.3. Approach #3. Mcthods of weighted residuals

(Given an arbitrary weight function w, where
S={uluec®u(l)=0},5° = {w|w e w(l) =0}
(" is the collection of all continuous functions.

Multiplying by w and integrating over ()

I
/0 w()[(c()(X)) + F(x)]dx = 0
[w(0)(c(0)u'(0) + C1] =0

Using the divergence theorem (integration by parts) we reduce the order of the differential:

Y ol
/ wg'dx = [wgl]) — / gw'dx

Jo 0

The weak form 1s then reduced to the following problem.

Find Y(X) € S such that:

.WCUdX* [wfdx- (0)G
S = {uluec u(l)=0}
S0 = {wlw € C° w(/) = 0}
Stages:

1. Analytical modeling
2. Geometric domain modeling
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Physical parameters modeling (approximation)
Numerical modeling using finite elements
Numerical model solving

o kW

Program compiling and result analysis

FEM involves, instead of directly solving differential equations, determining the approximate solution of an equivalent integral form. The
procedures used for the deduction of the numerical model finite element can be grouped as follows:

v"  Direct method ;
Variational method;
Weighted residue method;
Energetic method.

ARNEN

4.4. Types of analysis

s Structural
s  Thermal
s Electromagnetic

The differential equations to describe the structure behavior of a infinitesimal particle

s forresistance problems > Theory of elasticity
s for flud mechanics = Navier-Stokes equations
s for magnetic fields > Maxwell equations

s for heat transfer in solids > Fourier equation

The function described by the differential equation is a particular measurement:

s forresistance problems > displacement
s for fluid mechanics = speed, pressure
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s for magnetic fields > magnetic potential
s for heat transfer > temperature

In order to solve by the classical approach, after rough approximations on geometry, the initial and boundary conditions and material properties
applied to theoretical mathematical and calculation models, it results simplified analytical mathematical models which can be processed using
manual calculation, slide ruler or a pocket calculator.

For instance, the calculation model of mechanical structures elastically deformable, using theory of elasticity and strength of materials methods,
specific mathematical models are obtained and lead to simple calculating relationships (Navier, Juravski and so on) for different geometrical
areas (bars, boards, membranes, tubes, discs, etc..) and specific physical conditions.

In order to increasing the precision of the results obtained by classical
methods, the numerical methods through small approximations, usually

controllable, in terms of geometry, the boundary conditions and material

properties lead to numerical models that can be solved only by a numerical Total Elongation S
computer. I
Offzet-B )
ield e
. . . _Pru;p- |
4.4.1. Linear Static Analysis . im | .
w“w ;
Most structural analysis problems can be treated as linear static problems, i 2 | ET:?;fgtEh |
) o & [
based on the following assumptions: | |
! |
1. Small deformations (loading pattern 1s not changed due to the deformed / | |
shape) | |
2. Elastic materials (no plasticity or failures) - Fig. 115, between O and A. ; } I
3. Static loads (the load 1s applied to the structure in a slow or steady fashion) O oy Y _ z
rain, e

Fig. 115 Stress— strain curve
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Linear analysis can provide most of the information about the behavior of a structure, and can be a good approximation for many analyses. Tt
is also the bases of nonlinear analysis in most of the cases.

4.4.1.1. Stress

In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert
on each other. For example, when a solid vertical bar is supporting a weight, each particle in the bar pulls on the particles immediately above
and below it. When a liquid 1s under pressure, each particle gets pushed inwards by all the surrounding particles, and, in reaction, pushes them
outwards. These macroscopic forces are actually the average of avery large number of intermolecular forces and collisions between the particles
1n those molecules.

Stress inside a body may arise by various mechanisms, such as reaction to external forces applied to the bulk material (like gravity) or to its
surface (like contact forces, external pressure, or friction). Any strain {deformation) of a solid material generates an intemnal elastic stress,
analogous to the reaction force of a spring, that tends to restore the material to its original undeformed state. In liquids and gases, only
deformations that change the volume generate persistent elastic stress. However, if the deformation is gradually changing with time, even in
fluids there will usually be some viscous stress, opposing that change. Elastic and viscous stresses are usually combined under the name
mechanical stress [23].

Significant stress may exist even when deformation is negligible or non-existent (a common assumption when modeling the flow of water).
Stress may exist in the absence of external forces; such built-in stress is important, for example, in prestressed concrete and tempered glass.
Stress may also be imposed on a matenial without the application of net forces, for example by changes in temperature or chemical composition,
or by external electromagnetic fields (as in piezoelectric and magnetostrictive materials).

The relation between mechanical stress, deformation, and the rate of change of deformation can be quite complicated, although a linear
approximation may be adequate in practice if the quantities are small enough. Stress that exceeds certain strength limits of the material will
result in permanent deformation (such as plastic flow, fracture, cavitation) or even change its crystal structure and chemical composition.

In some branches of engineering, the term stress is occasionally used in a looser sense as a synonym of "internal force". For example, in the
analysis of trusses, it may refer to the total traction or compression force acting on a beam, rather than the force divided by the area of its cross-
section [25].
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The stress is the force acting on the surface of a body, the surface tends to zero. Stresses are classified according to the direction of force on

the body surface (Fig. 116):
L ]

on which 1t acts.

from the force vector component parallel to the cross section.

1 Strain Is

normal stress, which is denoted by &, arises from the force vector component perpendicular or antiparallel to the material cross section

a shear stress which is denoted as 7, is defined as the component of stress coplanar with a material cross section. Shear stress arises

L [ Young's modulus

| _ Stress _ F/A
O E = Strain AL/L

Stress

1:///” ! Surface F f A

HF——T/A

I O Normal component
: T Tangential component

Fig. 116 Stress components [25]

The formula to calculate average of the general shear stress is:

_F
£

where
T = the shear stress;
F = the force applied;

A = the cross-sectional area of material with area parallel to the applied force vector.

]
AL
Fig. 117 Elongation

Eq. 16
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4.4.1.2. Strain

Under a tension body deforms. Deformation can change the volume or body shape. Also, the elastic deformation can be recovered in the
moment of unloading the body, or can be the flow and remains unrecovered.

There are various kinds of deformations:

s compression - the normal stresses are oriented inside the body and volume decreases
s  dilation - the normal stresses are oriented outside the body and volume increases

s  simple shear

s pure shear

s  rotation

Compression and expansion are part of volume deformations.

Strain is defined as "deformation of a solid due to stress” and can be expressed as (Fig. 117):

g =Al/1=¢/E, Eq. 17

where

& = unitless measure of engineering strain;
Al = length variation,
| = initial length.
E = Young's modulus (Modulus of Elasticity) (N/m?, Pa). Young's modulus can be used to predict the elongation or compression of an object.
Young's Modulus
Most metals have deformations that are proportional with the imposed loads over a range of loads. Stress is proportional to load and strain 1s
proportional to deformation expressed by the Hooke's law like
E = stress / strain = (Fun / A) / (dl / L,). Eq. 18
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Modulus of Elasticity or Young's Modulus are commonly used for metals and metal alloys and expressed in terms 106 N/m? or Pa. Tensile
modulus are often used for plastics and expressed in terms 10° N/m? or Pa.

Shear Modulus
S =stress / strain = (Fp / A) /(S / d) Eq. 19

where

8 = shear modulus (N/m?)

Fp = force parallel to the faces which they act
A = area (m?)

s = displacement of the faces (m)

d = distance between the faces displaced (m)

4.4.1.3. Stress analysis

Stress analysis is a branch of applied physics that covers the determination of the internal distribution of stresses in solid objects. It is an
essential tool in engineering for the study and design of structures such as tunnels, dams, mechanical parts, and structural frames, under
prescribed or expected loads. It is also important in many other disciplines; for example, in geology, to study phenomena like plate tectonics,
vulcanism and avalanches; and in biology, to understand the anatomy of living beings [23].

Stress analysis is generally concerned with objects and structures that can be assumed to be in macroscopic static equilibrium. By Newton's
laws of motion, any external forces are being applied to such a system must be balanced by internal reaction forces, which are almost always
surface contact forces between adjacent particles — that 1s, as stress. Since every particle needs to be in equilibrium, this reaction stress will
generally propagate from particle, creating a stress distribution throughout the body.

The typical problem in stress analysis is to determine these internal stresses, given the external forces that are acting on the system. The latter
may be body forces (such as gravity or magnetic attraction), that act throughout the volume of a material; or concentrated loads (such as friction
between an axle and a bearing, or the weight of a train wheel on a rail), that are imagined to act over a two-dimensional area, or along a line,
or at single point.
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In stress analysis one normally disregards the physical causes of the forces or the precise nature of the matenials. Instead, one assumes that the
stresses are related to deformation (and, in non-static problems, to the rate of deformation) of the material by known constitutive equations
[25].

Stress analysis may be carried out experimentally, by applying loads to the actual artifact or to scale model, and measuring the resulting stresses,
by any of several available methods. This approach is often used for safety certification and monitoring. However, most stress analysis 1s done
by mathematical methods, especially during design.

The basic stress analysis problem can be formulated by Huler's equations of motion for continuous bodies (which are consequences of Newton's
laws for conservation of linear momentum and angular momentum) and the Euler-Cauchy stress principle, together with the appropriate
constitutive equations. Thus one obtains a system of partial differential equations involving the stress tensor field and the strain tensor field, as
unknown functions to be determined. The external body forces appear as the independent {"right-hand side") term in the differential equations,
while the concentrated forces appear as boundary conditions. The basic stress analysis problem is therefore a boundary-value problem.

Stress analysis for elastic structures is based on the theory of elasticity and infinitesimal strain theory. When the applied loads cause permanent
deformation, one must use more complicated constitutive equations, that can account for the physical processes involved (plastic flow, fracture,
phase change, etc.).

However, engineered structures are usually designed so that the maximum expected stresses are well within the range of linear elasticity (the
generalization of Hooke’s law for continuous media); that is, the deformations caused by internal stresses are linearly related to them. In this
case the differential equations that define the stress tensor are linear, and the problem becomes much easier. For one thing, the stress at any
point will be a linear function of the loads, too. For small enough stresses, even non-linear systems can usually be assumed to be linear.

Stress analysis is simplified when the physical dimensions and the distribution of loads allow the structure to be treated as one- or two-
dimensional (Fig. 118). In the analysis of trusses, for example, the stress field may be assumed to be uniform and uniaxial over each member.
Then the differential equations reduce to a finite set of equations (usually linear) with finitely many unknowns. In other contexts one may be
able to reduce the three-dimensional problem to a two-dimensional one, and/or replace the general stress and strain tensors by simpler models
like unmiaxial tension/compression, simple shear, etc.
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Fig. 118 Simplified model of a truss for stress analysis,

Still, for two- or three-dimensional cases one must solve a partial differential equation problem. Anlytical or closed-form solutions to the
differential equations can be obtained when the geometry, constitutive relations, and boundary conditions are simple enough. Otherwise one

must generally resort to numerical approximations such as the finite element method, the finite difference method, and the boundary element
method [25].

4.4.2. Vibration Analysis [1]

4.4.2.1. Introduction

A spring and a mass interact with one another to form a system
that resonates at their characteristic natural frequency. If energy
is applied to a spring-mass system, it will vibrate at its natural
frequency. The level of a general vibration depends on the
strength of the energy source as well as the damping inherent in
the system. Consider the single degree of freedom system in Fig.

119 that is usually introduced in a first course in physics or
ordinary differential equations. Fig. 119 A spring-mass-damper single degree of freedom system

m
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There, k 1s the spring constant, or stiffness, and m 1s the mass, and ¢ 1s a viscous damper. If the system 1s subjected to a horizontal force, say
(1), then Newton’s law of motion leads to the differential equation of motion in terms of the displacement as a function of time, x(t):
Px /df + ¢ dx /dt + kx(t) = fi1)
md'x cdx/ Kx(t) = Eq 20
which requires the initial conditions on the displacement, x{@), and velocity, v(0) = dx / dt{0). When there is no external force and no damping,
then it 1s called free, undamped motion, or simple harmonic motion (SHM):
md’x /df’ + kx(t) = 0.
Eq.21
The usual simple harmonic motion assumption 1s x(#) = a sin (wf) where a i1s the amplitude of motion and @ 1s the circular frequency of the
motion. Then the motion is described by
[k—c’ m] asin(wt) =0, or [k—w’ m] =
: : ' por * Eq. 22
The above equation represents the simplest eigen-analysis problem. There vou wish to solve for the eigenvalue, o, and the eigenvector, a. Note
that the amplitude, a, of the eigenvector is not known. It is common to scale the eigenvector to make the largest amplitude unity. The above
scalar problem 1s easily solved for the circular frequency (eigenvalue),

w = 2wk, = k/m. Eq 23

which 1s related to the so called natural frequency, Fu, by Fn = /2x.

From this, it is seen that if the stiffness increases, the natural frequency also increases, and if the mass increases, the natural frequency decreases.
If the system has damping, which all physical systems do, its frequency of response is a little lower, and depends on the amount of damping.
They can be useful in validating finite element calculations. Note that the above simplification neglected the mass of both the spring and the
dampener. Any physical structure vibration can be modeled by springs (stiffnesses), masses, and dampers. In elementary models you use line
springs and dampers, and point masses. It is typical to refer to such a system as a “lumped mass system”. For a continuous part, both its stiffness
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and mass are associated with the same volume. Tn other words, a given volume 1s going to have a strain energy associated with its stiffness and
a kinetic energy associated with its mass. A continuous part has mass and stiffness matrices that are of the same size (have the same number
of DOF). The mass contributions therefore interact and can not naturally be lumped to a single value at a point. There are numerical algorithms
to accomplish such a lumped (or diagonal) mass matrix but it does not arise in the consistent finite element formulation

4.4.2.2. Finite Element Vibration Studies

In finite element models, the continuous nature of the stiffness and mass leads to the use of square matrices for stiffness, mass, and damping.
They can still contain special cases of line element springs and dampers, as well as point masses. Dampers dissipate energy, but springs and
masses do not.

If you have a finite element system with many DOF then the above single DOF system generalizes to a displacement vector, X(t) interacting
with a square mass matrix, M, stiffness matrix, K, damping matrix C, and externally appled force vector, F(1), but retains the same general
form:

Md'X/dr+ CdX/dr+ KXyt = Fii) Eq. 24

plus the initial conditions on the displacement, X(0), and velocity, v(0) = dX / di(0). Integrating these equations in time gives a time history
solution. The solution concepts are basically the same, they just have to be done using matrix algebra. The corresponding SHM, or free vibration
mode (C =0, F =0) {or a finite element system 1s

Md&X/dr =EXit)=10
Eq. 25

The SHM assumption generalizes to Xz} = A sin (o) where the amplitude, A, 1s usually called the mode shape vector at circular frequency ®.
This leads to the general matrix eigenvalue problem of a zero determinant:

|K-a’M|=0 Eq. 26

There 1s a frequency, say o, and mode shape vector, Ay, for each degree of freedom, k. A matrix eigenvalue-eigenvector solution is much
more computationally expensive that a matrix time history solution. Therefore most finite element systems usually solve for the first few natural
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frequencies. Depending on the available computer power, that may mean 10 to 100 frequencies. A lot of FEM software applications includes
natural frequency and mode shape calculations as well as time history solutions.

Usually you are interested only in the first few natural frequencies. A zero natural (or slightly negative one) frequency corresponds to a ngid
body motion. A part or assembly has at most six RBM of “vibration’, depending on how or if it is supported. If a shell model is used the
rotational DOF exist and the mass matrix 1s generalized to include the mass moments of inertia. For every natural frequency there 1s a
corresponding vibration mode shape. Most mode shapes can generally be described as being an axial mode, torsional mode, bending mode, or
general mode.

Like stress analysis models, probably the most challenging part of getting accurate finite element natural frequencies and mode shapes is to get
the type and locations of the restraints correct. A crude mesh will give accurate frequency values, but not accurate stress values. The solver
software contains equations for most known analytic solutions for the {requencies of mechanical systems. They can be quite useful in validating
the finite element frequency results.

4.4.2.3. Analytic Solutions for Frequencies

The analvtic frequency and mode shape solutions for many parts with common geometries are found In a course on the vibration of continuous
media. The geometries include axial bars, axial shafts in torsion, beams with transverse motion vibration, flat plates of various shapes, and thin
shells of various shapes. Several examples of them are given in the “validation problems” set of examples presented along side the software
tutorials.

Consider the longitudinal vibration of a bar. The results depend on which type of support is applied to each end of the bar. For one end restrained
and the other end free the natural frequencies are

=
(2n—1)mwe E -
W =F T c= Pn=1.23... .
= N Eq. 27

However, if both ends are restrained they are
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nmwe E
Wy =——C= [.0= Ly o2 Ty e 100,
N? Eq.28
This shows that for a continuous body there are, in theory, an infinite number of natural frequencies and mode shapes. Try a single quadratic
element to model a fixed-fixed bar frequency. Restrain the two end DOF (the first and third row and column) of the above 3 by 3 matrices.

Only a single DOF remains to approximate the first mode. Solve the restrained matrix eigen-problem:

[k] - w®*[m]| = 0. Eq. 29

The reduced terms in the matrices are

E4A_ . PAL
3pl16]- w55

[16]1=0

- 10
Wy =

°F and w, = VI0< = 3.165
36 IZp L L

>

which is less that 1% error compared to the exact result. Adding more elements increases the accuracy of each frequency estimate, and also
yields estimates of the frequencies associated with the additional DOF. For example, adding a second quadratic bar element gives a total of
three un-restrained DOF. So you could solve for the first three frequencies. The value for <1 would be more accurate and you would have the
first estimates of ¢ and o,

Usually, the masses farthest from the supports have the most effects on the natural frequency calculations. If you only care about the frequencies
you could use split lines to build larger elements near the supports. For beams and shells, the transverse displacements are more important than
the tangential rotational DOF.
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4.4.3. Buckling Analysis [1]

4.4.3.1. Introduction

There are two major categories leading to the sudden failure of a mechanical component: material failure and structural instability, which is
often called buckling. For material failures youneed to consider the yield stress for ductile materials and the ultimate stress for brittle materials.

Those material properties are determined by axial tension tests and axial compression tests of short columns of the material (see Fig. 120).
The geometry of such test specimens has been standardized. Thus, geometry 1s not specifically addressed in defining material properties, such
as vield stress. Geometry enters the problem of determining material failure only indirectly as the stresses are calculated by analytic or
numerical methods.

F

Short F

Compression Ductile Brittle
Member Material Material

Fig. 120 Short columns fuil due to material failure {1}

Predicting material failure may be accomplished using linear finite element analysis. That is, by solving a linear algebraic system for the
unknown displacements, K-8 = F. The strains and corresponding stresses obtained from this analysis are compared to design stress (or strain)
allowables everywhere within the component. If the finite element solution indicates regions where these allowables are exceeded, itis assumed
that material failure has occurred.
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The load at which buckling occurs depends on the stiffness of a component, not upon the strength of its matenials. Buckling refers to the loss
of stability of a component. The buckling mode is usually independent of material strength. This loss of stability usually occurs within the
elastic range of the material.

The two phenomenon are governed by different differential equations. Buckling failure is primarily characterized by a loss of structural stiffness
and 1s not modeled by the usual linear finite element analysis, but by a finite element eigenvalue-eigenvector solution, |K + b Kg| 8m = 0,
where Jm 13 the buckling load factor (BLF) for the m-th mode, Kr is the additional “geometric stiffness” due to the stresses caused by the
loading, F, and 8w 1s the associated buckling displacement shape for the m-th mode. The spatial distribution of the load is important, but its
relative magnitude is not. The buckling calculation gives a multiplier that scales the magnitude of the load (up or down) to that required to
cause buckling. The multiplier depends on the material modulus.

F F/A pnefastic
Stability
1

o Limit

- oy P=
(Strength Limk)

Euler's Formula
( Elastic Sability Limit)

i

g |

L B 1

g 1

i i
Long 8 g : g
Compression F 9 = =

Member Buckling o L/

Fig. 121 Leng columns fail dite to instability [1]

Slender or thin-walled components under compressive stress are susceptible to buckling. Most people have observed what 1s called “Huler
buckling” where a long slender member subject to a compressive force moves lateral to the direction of that force, as illustrated in Fig. 121.
The force, I, necessary to cause such a buckling motion will vary by a factor of four depending only on how the two ends are restrained.
Therefore, buckling studies are much more sensitive to the component restraints that in a normal stress analysis. The theoretical Euler solution
will lead to infinite forces in very short columns, and that clearly exceeds the material ultimate stress. In practice, Euler column buckling can
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only be applied to long columns and empirical transition equations are required for intermediate length columns. For very long columns the
loss of stiffness occurs at stresses far below the material ultimate or yield stresses.

There are many analytic solutions for idealized components having elastic instability. About 75 of the most common cases are tabulated in the
classic references. Euler long column buckling is quite sensitive to the end restraints. Fig. 122 shows five of several cases of end restraints
and the associated k value used in computing buckling load or stress.

Case 1 2 3 4 5

Constraints

| k 4 ’ 1 25 2.046 i

Fig. 122 Restraints have a large influence on the critical buckling load [1]

4.4.3.2. Buckling Terminology

27 e

The topic of buckling is still unclear because the keywords of “stiffness”, “long” and “slender” have not been quantified. Most of those concepts
were developed historically from 1D studies. Youneed to understand those terms even though finite element analysis lets you conduct buckling

studies in 1D, 2D, and 3D. For a material, stiffness refers to either its elastic modulus, E, or to its shear modulus, G =E /{2 + 2 v} where v is
Poisson’s ratio.

Slender is a geometric concept addressing the ratio of a members length and a property of the cross-sectional area that is quantified by the
radius of gyration. The radius of gyration, r, has the units of length and describes the way i which the area of a cross-section 1s distributed
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around its centroidal axis. If the area is concentrated far from the centroidal axis it will have a greater value of the radius of gyration and a
greater resistance to buckling. A non-circular cross-section will have two values for its radius of gyration. The section tends to buckle around
the axis with the smallest value. The radius of gyration, r, is defined as:

r=yI/A, Eq. 30

where I and A are the area moment of inertia, and area of the crosssection. For a circle of radius R, you obtain » = R /2. Solids can have regions
that are slender, and if they carry compressive stresses a buckling study is justified. Long is also a geometric concept that is quantified by the
nondimensional “slenderness ratio” L / r, where L denotes the length of the component. The slenderness ratio, of a part made of a single

material, is defined to be long when it is greater than =/ky2E/ay. where Ty is the material yield stress. A long slenderness ratio is
typically greater than 120. The above equation is the dividing

point between long (Euler) columns and intermediate (empirical)

columns. The critical compressive stress that will cause buckling BLF Buckling Status  Remarks
always decreases as the slendemess ratio increases. The critical -1 T RS ICUSE L e WA
) : predicted estimated critical loads.
Euler buckling stress depends on the material, the slenderness = Buckling The applied loads are exactly equal to the
ratio, and the end restraint conditions. predicted critical loads. Buckling is expected.
<1 Buckling The applied loads exceed the estimated
4.4.3.3. Buckling Load Factor predicted critical loads. Buckling will occur.
-1 <BLF | Bucklin possible Buckling is predicted if you reverse the
The buckling load factor (BLF) is an indicator of the factor of <0 load directions.
safety against buckling or the ratio of the buckling leads to the -1 Buckling possible F“C]klli_“g is expected if you reverse the
: ; . oad directions.
(.:urrently ?.pplled 102.1ds. Table from Iig. 123 111u§trates .the <1 Buckling not The applied loads are less than the
interpretation of possible BLF values returned by SW Simulation, predicted estimated critical loads. even if you
for example. Since buckling often leads to bad or even reverse their directions.
catastrophic results, you should utilize a high factor of safety for Fig. 123 Interpretation of the Buckling Load Factor

buckling loads (say BLF > 2).
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4.4.3.4. General Buckling Concepts

Other 1D concepts that relate to stiffness are: axial stiffness, E-A / L, flexural (bending) stiffness, E<I / 1., and torsional stiffness, G-J / L,
where J 1s the polar moment of inertia of the cross-sectional area (J =1, =1, + Iy). Today, stiffness usually refers to the fimte element stiffness
matrix, which can include all of the above stiffness terms plus general solid or shell stiffness contributions. Analytic buckling studies identify
additional classes of instability besides Euler buckling (see Fig. 124). They include lateral buckling, torsional buckling, and other buckling
modes. A finite element buckling study determines the lowest buckling factors and their corresponding displacement modes. The amplitude of
a buckling displacement mode, |6w|, is arbitrary and not useful, but the shape of the mode can suggest whether lateral, torsicnal, or other
behavior 1s governing the buckling response of a design.

bet #3 lexural befw/\ Lateral Py
cInEe 4 Flexura ateral =
P/ after, torsional buckling before I
- buckling  after i of an 1 j:l:_
Torsional buckling {ﬂ“' I-beam

Fig. 124 Some samplie buckling mode shapes {1{

4.4.4. Thermal Analysis [1]

4.4.4.1. Concepts of thermal analysis

There are three different types of heat transfer: conduction, convection, and radiation. A temperature difference must exast for heat transfer to
occur. Heat 1s always transferred in the direction of decreasing temperature. Temperature is a scalar, but heat flux 1s a vector quantity. The
thermal variables and boundary conditions relate to the displacements and stress in an axial bar through the analogy as summarized in Fig.
125.
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Thermal Analysis Item, [units], Structural Analysis Item, [units].
symbol symbol

Unknown: Temperature [K], T Unknown: Displacements [m], u
Gradient: Temperature Gradient Gradient: Stramns [m/m]. €

[K/m], VT

Flux: Heat flux [W/m2]. q Flux: Stresses [N/m2]. ¢

Source: Heat Source for point. line, Source: Force for point. line,
surface. volume surface. volume

[W]. [W/m], [W/m2], [W/m3], Q [N]. [N/m]. [N/m2]. [N/m3]. g
Indirect restraint: Convection Indirect restraint: Elastic support
Restramt: Prescribed temperature Restraint: Prescribed displacement
[K]. T [m]. u

Reaction: Heat flow resultant [W). H @ Reaction: Force component [N]. F
Material Property: Thermal Matenial Property: Elastic modulus
conductivity [W/m-K]. k [N/m2]. E

Material Law: Fourier’s law Material Law: Hooke’s Law

Fig. 125 Terms of the 1D thermal-structural analogy [1f

Conduction takes place within the boundaries of a body by the diffusion of its internal energy. The temperature within the body, T, 1s given
in units of degrees Celsius [C], Fahrenheit [F], Kelvin [K], or Rankin [R]. Its variation in space defines the temperature gradient vector, VT,
with units of [K/m] say. The heat flux vector, g, per unit area is define by Fourier’s Conduction Law, as the thermal conductivity matrix, k,
times the negative of the temperature gradient, q =- k V'T. The integral of the heat flux over an area yields the total heat flow for that area.

Thermal conductivity has the units of [#/#-K| while the heat flux has units of [/#/m?]. The conductivity, k, is usually only known to three or
four significant figures. For solids it ranges from about 417 #/m-K for silver down to 0.76 W/m-K for glass. A perfect insulator matenal (& =
) will not conduct heat; therefore the heat flux vector must be parallel to the insulator surface. A plane of symmetry (where the geometry, k
values, and heat sources are mirror images) acts as a perfect insulator. In {inite element analysis, all surfaces default to perfect insulators unless
you give a specified temperature, a known heat influx, a convection condition, or a radiation condition.
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Convection occurs 1n a fluid by mixing. Here we will consider only {ree convection from the surface of a body to the surrounding fluid. Forced
convection, which requires a coupled mass transfer, will not be considered. The magnitude of the heat flux normal to a solid surface by free
convection is

e = heAn (Tn— Ty Eq. 31

where h 1s the convection coefficient, Ay is the surface area contacting the fluid, Ty is the convecting surface temperature, and Tris the
surrounding fluid temperature, respectively. The units of h are [W/m”-K]. Its value varies widely and is usually known only from one to four
significant figures. Typical values for convection to air and water are 5-25 and 500-1000 Wn’-K, respectively.

Radiation heat transfer occurs by electromagnetic radiation between the surfaces of a body and the surrounding medium. Tt is a highly nonlinear
function of the absolute temperatures of the body and medium. The magnitude of the heat flux normal to a solid surface by radiation 1s

G =26 AT 4 — T 9. Eq. 32
Here T, 1s the absolute temperature of the body surface, T 1s the absolute temperature of the surrounding medium, A, is the body surface
area subjected to radiation,

6 = 5.67 x 108 W/m>-K* Eq. 33

1s the Stefan-Boltzmann constant, and ¢ 1s a surface factor (¢ =1 for a perfect black body).

Transient, or unsteady, heat transfer in time also requires the material properties of specific heat at constant pressure, ¢, in [ J&g-K], and the
mass density, p in [kg/m’]. The specific heat is typically known to 2 or 3 significant figures, while the mass density is probably the most
accurately known material property with 4 to 5 significant figures.

The one-dimensional governing differential equation for transient heat transfer through an area A, of conductivity ks, density p, specific heat
cp with a volumetric rate of heat generation, Q, for the temperature T at time t is

ks 0T/AXNIX+Q(x)=pc, AT/, Eq. 34

for0<x<L andtimet> 0.
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It requires mitial conditions to describe the beginning state, and boundary conditions for later times. For a steady state condition ( @ T/ d t=0)
the typical boundary conditions of one of the following:

T prescribed at 0 and L, or

T prescribed at one end and a heat source at the other, or

T prescribed at one end and a convection condition at the other, or
A convection condition at one end and a heat source at the other, or
A convection condition at both ends.

ok N

In the 3D case the differential equation becomes the anisotropic Poisson Equation. That s, the above diffusion term {second derivatives in
space) 1s expanded to include derivatives with respect to y and 7, times their corresponding thermal conductivity values.

4.4.4.2. Finite Flement Thermal Analysis

The finite element method creates a set of algebraic equations by using an equivalent governing integral form that is integrated over a mesh
that approximates the volume and surface of the body of interest. The mesh consists of elements connected to nodes. In a thermal analysis,
there will be one simultaneous equation for each node. The unknown at each node is the temperature. Today, a typical thermal mesh involves
20,000 to 100,000 nodes and thus temperature equations. The restraints are specified temperatures (or a convection condition since it includes
a specified fluid temperature). The reactions are is the resultant heat flow that is necessary to maintain a specified temperature. All other
conditions add load or source terms. The default surface condition is an insulated boundary, which results in a zero source (load) term.

The assembled matrix equations for thermal equilibrium will be [1]:
[Kuu Kug [Tu}_ {Fg]
Kgu Kgg Ty Fy Eq. 35

where now Tg represents the given (restrained) nodal temperatures, Iy represents the known resultant nodal heat power (heat flow) at the node.
This system of equations is solved for unknowns Tu. The thermal reactions, Fy, at the given temperature nodes represent the total heat flow, in

170



or out, necessary to maintain the given temperatures, T, From the above structural-thermal analogy, the matrix equations of a linear
{(temperature interpolation) conducting element is

[ 1 {7} {5

where

k =k AL Eq. 37

may be referred to as the thermal stiffness of the rod of length, L, area , A, and thermal conductivity %-. In this case, T corresponds to a nodal
temperature, and F corresponds to the resultant nodal heat power from the various heat sources. The thermal load {source) items for steady
state analysis are given in Fig. 126. Both convection and radiation require inputs of the estimated surface conditions.

Load Type  Geometry Required Input

Convection = Faces Film coefficient and bulk temperature

Heat Flux | Faces Heat flux (heat power/unit area) }L‘alue

Heat Pts, edges.  Total heat power value (rate of heat generation

Power faces parts = per unit volume times the part volume)

Insulated Faces None. This is the defauit condition for any face

(Adiabatic) not subject to one of the three above conditions

Radiation = Faces Surroundmng temperature. emissivity values,
and view factor for surface to ambient radiation

Fig. 126 Loads for steady state thermal analysis fI]
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Table from Fig. 127 gives typical convection coefficients values. Note that there is a wide range in such data. Therefore, you will often find 1t
necessary to run more than one study to determine the range of answers that can be developed in vour thermal study.

Fluid Medium h
Auir (natural convection) 5-25
Air / superheated steam (forced convection) 10-500
01l (forced convection) 60-1800
Steam (condensing) 5000-120,000
Water (boiling) 2500-60.000
Water (forced convection) 300-6000

Fig. 127 Typical heat convection coefficient values h, [W/m: K] [1f

Having supplied all the restraints, loads, and properties you can run a thermal analysis and continue on to post-processing and documenting
the results. Table from Fig. 128 gives the thermal restraints items for steady state analysis. Most programs offer only a temperature restraint.
Different types of FEA software, such as ANSYS or SW, also offers the ability to define a non-ideal material interface, as in Fig. 129. That is
often needed in practice and is referred to as a contact resistance. It basically defines a temperature jump across an interface for a given heat
flux through the interface. The necessary resistance input, R, depends on various factors. Table from Fig. 130 gives typical R values, while
Table from Fig. 131 cites values of its reciprocal, the conductance.

Restraint Geometric Entities Required Input
Temperature | Vertexes, edges. faces and parts | Temperature value
Contact Two contacting faces. Total or unit thermal
resistance See discussion. resistance.

Fig. 128 Restraints in steady state thermal analysis
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Material A 3
Material B
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_qu

Material A

T(x)

Material B

Fig. 129 Ideal and thermal contact resistance interfaces {1}

Contact Pressure
- Aluminum/aluminum/asr
Copper/copper/air
Magnesium/magnesinm/air
Stainless steel/stainless steel/ air

Moderate 100 kN/m” led4 kN/m’

1.5-5.0 0.2-04
1-10 0.1-0.5
1.5-35 0.2-04
6-25 0.7-4.0

Fig. 130 Typical contact resistance values, R x ed, [m®> K/W] [I]

Contacting Faces (pressure unknown) Conductance
Alummum / aluminum / air 2200 - 12000
Ceramic / ceramic / air 500 - 3000
Copper / copper / air 10,000 - 25,000
Iron / aluminum / air 45.000
Stainless steel / stainless steel / air 2000 - 3700
Stainless steel / stamless steel / vacuum 200 - 1100

Fig. 131 Typical contact conductance values, C, {W/n? K] {1f
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The temperature often depends only on geometry. The heat flux, and the conthermal reaction, always depends on the material thermal
conductivity. Therefore, it is always necessary to examine both the temperatures and heat flux to assure a correct solution. The heat flux is
determined by the gradient (derivative) of the approximated temperatures. Therefore, it 1s less accurate than the temperatures. The user must
make the mesh finer in regions where the heat flux vector is expected to rapidly change its value or direction. The heat flux should be plotted

both as magnitude contours, and as vectors. The items available for output after a thermal analysis run are given in table from Fig. 132.

Symbol

T
dT/ox

aT/dy
aT/oz

VT
Ox

Gy

Gz

Label Item

TEMP Temperature

GRADX | Temperature gradient in the selected reference
X-direction

GRADY | Temperature gradient in the selected reference
Y-direction

GRADZ | Temperature gradient in the selected reference
Z-direction

GRADN | Resultant temperature gradient magnitude

HFLUXX | Heat flux in the X-direction of the selected
reference geometry

HFLUXY @ Heat flux in the X-direction of the selected
reference geometry

HFLUXZ | Heat flux in the X-direction of the selected
reference geometry

HFLUXN | Resultant heat flux magnitude

Fig. 132 Thermal analysis output options {1/

The temperatures should be plotted as discrete color bands or as contour lines. The temperature contours should be perpendicular to insulated
boundaries. Near surfaces with specified temperatures, the contours should be nearly parallel to the surfaces. These “eyeball” checks are

illustrated in Fig. 133.
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Constant temperature, contour parallel
to boundary

Insulated,
contour \/
normal to
boundary

Insulated, contour

Constant temperature, f normal to boundary

contour parallel to boundary
Fig. 133 Guidelines for checking temperdatures in isotropic materials {1

The heat {lux vectors should be parallel to nsulated surfaces. They should be nearly perpendicular to surfaces with a specified constant
temperature. Those flux checks are illustrated in Fig. 134. These remarks on insulated boundaries do not apply if the material is anisotropic
with the principal matenal directions inclined relative to the insulated surface (as will be seen later).

Constant temperature, flux
near normal to boundary \
Insulated, flux \ \
parallel to =

boundary \’

Variable

Constant temperature, I / I A7] \

flux near normal to boundary Insulated, flux parallel to boundary

Fig. 134 Graphical checks for heat flux in isotropic materials {1/

The exact temperature gradient is discontinuous at an interface between different materials because their thermal conductivities will be
different. Pretty continuous color contours (the default) tend to prevent these important engineering checks. The temperature and temperature
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gradient vector can depend only on the geometry in some problems. Written results should not be given with more significant figures than the
material input data. For heat transfer problems that is typically three or four significant figures.

In most analysis softwares it 1s possible to list, sum, average, and graph results along selected edges, lines, curves or surfaces. Thus, you should
plan ahead and add "split lines" to the mesh where vou expect to find such graphs informative. The thermal reaction heat flows is available in
these application softwares while viewing the heat flux result plots.

4.5. Examples for solving commands

4.5.1. Solving the Model in CATIA

Eﬁl (Compute) Compute: | All, + OK - Computation Resources Estimation , ' Yes - Computation Status.

EJ Start  ENOVIAVSVPM Hle Edit View Insert TRl —— =101

J 4-_4v‘ @ “@’v@vﬁ‘ 8 ‘ Q Se+0015 of CPU
1,39e +005 kilo-bytes of memory
J J (C} | = & 1,868 +006 klo-bytes of disk

i) naly

-‘L' 'E‘;'ge Links Manager. 1

L

==\ Firite Blement Model, [ .

sis Manager

Do you want to continue the computation?

Fig. 135 Compute command in CATIA

4.5.2. Solving the Model in ANSYS

To solve the model click on the “Sclve” button on the Standard Toolbar.

176



Two processors used if present (default).
To set the number of processors use, “Tools > Solve Process Settings”.

_ saitool | | compuen seings
Ad ot _l e | ANSYS Malipypscs =

I Cistibute Sation 0F castle)
Lza GPU secalerstion (i possibiel | Hlane 'I

B T |

I Maraslly soecly MAPOL mancry sottiis

W

Aujditinal Cunriarsd Line Argarerila:
o | e |

Fig. 136 Solving the model in ANSYS [6]
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